Abstract

ABSTRACTThe surfaces of jute fibers (Corchorus capsularis L.) were processed to have different dumbbell‐shaped spacing (5 mm, 10 mm, 15 mm, and 20 mm), and the physical properties of the modified surfaces of the jute fibers were evaluated in this study. The dumbbell‐shaped jute fiber (DJF)‐reinforced friction materials were prepared through compression mold. The friction and wear performance of the DJF were tested using a friction material tester at constant speed. The results showed that the dumbbell‐shaped spacing has less influence on the friction coefficients of friction materials. The friction coefficients of DJF have bigger fluctuation compared with that of straight fiber during the temperature‐increasing procedure. The wear rate of DJF with dumbbell‐shaped spacing of 15 mm was the lowest, except for that when the temperatures were about 200–250°C. Morphologies of wear surfaces of DJF were observed using scanning electron microscopy and the friction characteristics were analyzed. The results showed that reinforced with DJFs in the friction materials can reduce the specific wear rate and the variation in friction coefficient compared with that of straight jute fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40748.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call