Abstract

To understand the thermo-mechanical behaviour in incremental sheet forming (ISF), it is important to precisely determine the interfacial and thermal-relevant parameters including coefficient of friction (COF) and heat partition coefficient (HPC), and to characterise the effect of thermo-mechanically induced heat generation under ISF processing conditions. In the present study, a new tool path-defined straight groove test combined with mechanical and thermal detection is proposed to determine the COF and HPC of Aluminium alloy (AA1050) and commercially pure titanium Grade 1 (CP Ti Grade 1) sheets. The experimental and numerical results show that the determined COF and HPC values are sufficiently accurate. The interaction between friction force and thermal response is observed by this testing method. A novel theoretical thermal model is developed to correlate the relationship between friction-induced heat generation and the thermal effect. The results indicate that the new theoretical model can capture the temperature distribution and variation under different processing conditions, and the results show a good agreement with the finite element (FE) simulation. The presented testing method and theoretical model provide an insight into the determination of the thermal-relevant parameters (COF and HPC), and the quantification of the effect of friction-induced heat generation on the thermal response of the materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.