Abstract

AbstractWe consider \(f(R) = R + R^{2}\) gravity interacting with a dilaton and a special non-standard form of nonlinear electrodynamics containing a square-root of ordinary Maxwell Lagrangian. In flat spacetime the latter arises due to a spontaneous breakdown of scale symmetry and produces an effective charge-confining potential. In the R + R 2 gravity case, upon deriving the explicit form of the equivalent local “Einstein frame” Lagrangian action, we find several physically relevant features due to the combined effect of the gauge field and gravity nonlinearities such as: appearance of dynamical effective gauge couplings and confinement-deconfinement transition effect as functions of the dilaton vacuum expectation value; new mechanism for dynamical generation of cosmological constant; deriving non-standard black hole solutions carrying additional constant vacuum radial electric field and with non-asymptotically flat “hedge-hog”-type spacetime asymptotics.KeywordsBlack HoleGauge FieldEinstein FrameBlack Hole ThermodynamicFlat SpacetimeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.