Abstract
In this paper, a numerical crack growth analysis is conducted by using the Maximum Tangential Stress (MTS) criterion and its extension, which considers the contact stress between the crack surfaces. Moreover, fretting fatigue is a multiaxial non-proportional loading problem, and most components are subjected to asynchronous loads. Therefore, this paper mostly focuses on the influence of loading phase difference (Φ) on the crack propagation behavior. Meanwhile, for the fretting fatigue problem, as there is a relationship between the crack initiation and propagation, the effect of initiation characteristics, including crack initiation position and direction is studied under different loading phase differences using Linear Elastic Fracture Mechanics (LEFM) theory. It is observed that the predicted crack path and lifetime by using the extended MTS criterion and Paris’ law is in good agreement with the experimental results in the literature. It is found that the phase difference has a strong effect on the crack propagation behavior. Furthermore, we found that the crack initiation position has a greater influence on crack propagation behavior than the crack initiation direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.