Abstract

Fresnel coherent diffractive imaging (FCDI) is a relatively recent addition to the suite of imaging tools available at third generation x-ray sources. It shares the strengths of other coherent diffractive techniques: resolution limits that are independent of focusing optics, single-plane measurement and high dose efficiency. The more challenging experimental geometry and detailed reconstruction algorithms of FCDI provide enhanced numerical stability and convergence properties to the iterative algorithms commonly used. Experimentally, a diverging beam is utilized, which facilitates sample alignment and allows the imaging of extended samples. We describe the underlying physics and assumptions that give rise to the FCDI iterative reconstruction algorithms, as well as their implications for the design of a successful FCDI experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.