Abstract

Recycling trash and protecting natural resources are two of the many benefits of using copper slag as a fine aggregate in a concrete building. However, stakeholders need proven research output to build trust and initiate or enhance the use of such industrial waste in buildings. This study evaluated self-compacting concrete’s fresh and hardened characteristics (SCC) comprising a copper slag aggregate (CSA). For this purpose, six mixes were prepared by substituting river sand with CSA up to 50%, with a 10% increment. The properties of fresh SCC were evaluated using slump flow, V-funnel, and L-box tests. Several parameters of SCC were examined, including water absorption, sorptivity, chloride ion penetration, sulphate attack, and acid attack tests. Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) were used to investigate the concrete microstructure. The results indicated that the fresh characteristics of SCC were enhanced as the amount of CSA increased consistently. The durability properties showed a considerable enhancement in SCC mixes comprising up to 20% of CSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.