Abstract
Due to adhered mortar in recycled concrete aggregates, some of the properties of concrete made with these types of aggregates, such as water absorption, porosity, electrical resistivity, and chloride ion penetration, may be affected. In this study, silica fume was used as a part of cementitious materials to improve the properties of self-compacting concrete (SCC), which were made with fine and coarse recycled aggregates. Three series of mixtures were made in the laboratory. In the first and second series, coarse recycled aggregates with replacement of 25%, 50%, 75% and 100% were used with and without silica fume. In the third series, 25% of fine recycled aggregates were replaced with fine natural aggregates. Slump flow and J-ring tests were considered for fresh state of SCC. The compressive strength, water absorption, ultrasonic pulse velocity, electrical resistivity, and chloride ion penetration tests were performed for hardened concrete. The use of silica fume improved the properties of fresh SCC. The results showed that silica fume can reduce water absorption and porosity. The silica fume showed that can resulted in a significant increase in electrical resistivity. On the other hand, the replacement of 25% of recycled aggregates did not have a significant effect on electrical resistivity, the electrical resistivity decreased by increasing the amount of replacement. Silica fume was very effective in controlling chloride ion penetration and reducing total charge passed. Silica fume also controlled the temperature of the solutions used during the test which indicates the control of the movement of ions in the penetration into concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.