Abstract
Data analysis can be done in more effectively, when they are represented in the form of graphs. Especially, Frequent Subgraph Mining (FSM) is an important technique for extracting similar patterns in the graphs. Normally, things have been assumed as the graph data we are taking will fit in main memory for their processing. But, as the data grow higher and higher, they will not fit in main memory, rather they need a special framework called MapReduce to put them in a distributed fashion and to process. Many Frequent Subgraph Mining (FSM) algorithms are changing their faces to adopt the MapReduce programming paradigm. Using FSM-H, analysis had been performed on various graph based data like molecular structures, viral patterns etc., Even DBLP i.e., the computer science bibliography data have also been analyzed using this pattern extraction technique. Whereas the details of Tamil Journals and Publications are kept hidden and not available widely to do research on them, for getting their insights to improve the number and quality of the journals; and to give some input for the authors interested to work on Tamil research. In this work, we collected the Tamil journals details from the available data sources and extracted essential patterns using Frequent Subgraph Mining Technique. Also, we presented a detailed statistical analytics on certain frequently happening Tamil Journals and Conferences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.