Abstract
Aberrant methylation of promoter CpG islands is known to be a major inactivation mechanism of tumor-suppressor and tumor-related genes. In order to identify novel hypermethylated genes in early stage lung adenocarcinoma, we carried out methylated CpG island amplification, modified suppression subtractive hybridization, and methylation-specific polymerase chain reaction to identify aberrant methylation of CpG islands in the A/J mouse lung adenoma model, which histologically mimics the early stage of human pulmonary adenocarcinoma. Through methylated CpG island amplification, suppression subtractive hybridization, and differential screening, we detected five genes, three of which have human homologs. Two of them showed downregulation of their expression in human lung adenocarcinoma. Of these two genes, we selected sterile alpha motif domain 14 (SAMD14) and further analyzed its methylation status and expression level by methylation-specific polymerase chain reaction and quantitative real-time polymerase chain reaction. Most of the lung adenocarcinoma cell lines showed suppressed expression of SAMD14 together with hypermethylation at the promoter region, although an immortalized bronchial epithelium cell line (PL16B) did not show hypermethylation and did express SAMD14. The expression of SAMD14 in A549 was rescued by treatment with the demethylation agent 5-aza-2'-deoxycytidine. These data indicate that hypermethylation of the SAMD14 gene promoter region is associated with silencing of its expression. Hypermethylation at the CpG site of the SAMD14 promoter region was detected frequently in early invasive adenocarcinoma (8/24, 33.3%) but not in in situ adenocarcinoma (0/7, 0%) or normal lung tissue (0/31, 0%). Hypermethylation of the SAMD14 gene is a specific event in pulmonary adenocarcinogenesis and malignant progression.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have