Abstract
AbstractThe coupled mechanical resonators (MRs) are the prominent candidate for studying macroscopic quantum coherence. The prerequisite for observing macroscopic mechanical coherence is cooling the MRs to their ground state. Here, a theoretical scheme is proposed for improving the cooling of two coupled MRs by imposing frequency modulation (FM) upon the system to suppress the Stokes heating processes. By the methods of covariance analysis and numerical simulations, it is demonstrated that the cooling of double MRs can be realized in both stable and unstable regions with high efficiency compared to the cooling without FM, even if in unresolved sideband (USB) regime. By modulating the parameters appropriately, the cooling efficiencies of two MRs can be flexibly adjusted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.