Abstract

We propose a scheme to enhance optomechanical cooling via synthetic magnetism and frequency modulation (FM) in a three-mode loop-coupled optomechanical system. By introducing synthetic magnetism, the dark-mode effect can be broken, ensuring the simultaneous cooling of the two mechanical resonators. We find that the cooling of the two mechanical resonators is destroyed in the dark-mode-unbreaking (DMU) regime but can be achieved in the dark-mode-breaking (DMB) regime. Furthermore, FM can be used to suppress the Stokes heating process, significantly enhancing the cooling performance and greatly expanding the feasible parameter range. In particular, in the unresolved-sideband (USB) regime, ground-state cooling of the two mechanical resonators can be achieved via FM even in the unstable region. Finally, we also study ground-state cooling in a multi-mode optomechanical network by breaking the dark-mode effect. Our work paves the way for exploring macroscopic quantum manipulation in multiple systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.