Abstract

Traditionally, multimode input shaping controllers are tuned to systems' frequencies. This work suggests an alternative approach. A frequency-modulation (FM) input shaping technique is developed to tune the resonant frequencies of a system to a set of frequencies that can be eliminated by a single-mode primary input shaper. Most of the current input shaping techniques can be used as primary input shapers for the FM input shaping technique. Virtual feedback is used to modulate the closed-loop frequencies of a simulated double-pendulum model of an overhead crane to the point where the closed-loop second mode frequency becomes an odd-multiple of the closed-loop first mode frequency, which is the necessary condition for a satisfactory performance of most single-mode input shapers. The primary input shaper is based on the first mode frequency of the closed-loop system model. The input commands to the plant of the virtual feedback system are then used to drive the physical double-pendulum. Simulations results, using primary zero-vibration (ZV) and zero-vibration-derivative (ZVD) input shapers, are presented. The performance is validated experimentally on a scaled model of a double-pendulum overhead crane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.