Abstract
We calculate the frequency-dependent longitudinal and Hall conductivities and the Faraday and Kerr rotation angles for a single sheet of anisotropic Dirac semimetal protected by nonsymmorphic symmetry in the presence of a Zeeman term coupling to the out-of-plane component of the spin. While the Zeeman term causes a rotation of the plane of polarization of the light, the anisotropy causes the appearance of an elliptically polarized component in an initially linearly polarized beam. The two effects can be combined in a single complex Faraday rotation angle. At the zero-frequency limit, we find a finite value of the Faraday rotation angle, which is given by $2{\ensuremath{\alpha}}_{F}$, where ${\ensuremath{\alpha}}_{F}$ is the effective fine structure constant associated with the velocity of the linearly dispersing Dirac fermions. We also find a logarithmic enhancement of the Faraday (and Kerr) rotation angles as the frequency of the light approaches the absorption edge associated with the Zeeman-induced gap. While the enhancement is reduced by impurity scattering, it remains significant for an attainable level of material purity. These results indicate that two-dimensional Dirac materials protected by nonsymmorphic symmetry are responsive to Zeeman couplings and can be used as platforms for magneto-optic applications, such as the realization of polarization-rotating devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.