Abstract
In this paper, we propose techniques for the construction of frequency-coding sequences that give rise to frequency-coded waveforms having ambiguity functions with a clear area - containing no sidelobes - in a connected region surrounding the main lobe. These constructed sequences are called pushing sequences. First, two important properties of pushing sequences are investigated: the group D/sub 4/ dihedral symmetry property and the frequency omission property. Using the group D/sub 4/ dihedral symmetry property, we show how to construct additional pushing sequences from a given pushing sequence. Using the frequency omission property, we show how to construct pushing sequences of any length N and design proper frequency-coded waveforms that meet specific constraints in the frequency domain. Next, we use the Lempel T/sub 4/ construction of Costas sequences to construct pushing sequences with power 1. Finally, we show how to construct pushing sequences with any desired power using Lee codewords. Because these arbitrary-power pushing sequences constructed using Lee codewords do not have the Costas property, we derive expressions for the pattern of hits in the geometric array. Based on this, the general form of the positions and levels of all the sidelobe peaks are derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.