Abstract

Summary form only given. A virtual cathode oscillator (vircator) is a high power microwave device that exhibits frequency tunability which is inherent to its principle of operation. Two types of electron motion within the vircator generate microwaves (virtual cathode oscillation and reflexing electron motion). Although it is difficult to precisely predict the dominant microwave frequency of a vircator design prior to experimental observation, the oscillation frequency of the virtual cathode is approximately proportional to the plasma frequency of the electron beam as it enters the virtual cathode. Additionally, the reflexing electrons oscillate at a frequency which is inversely proportional to approximately four times the transit time of an electron through the anode-cathode gap (A-K gap). As a result, assuming space charge limited diode operation, the virtual cathode and reflexing electron oscillation frequencies, though different, are proportional to V <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/2</sup> /d, where d is the gap separation of the A-K gap and V is the accelerating voltage applied to the gap. Thus vircators are tunable via adjusting the A-K gap and varying the applied accelerating voltage. Texas Tech University has developed a sealed tube vircator which radiates approximately 100 MW with an operational frequency of 4GHz. Operating at 4GHz the diode has an A-K gap of 8mm, an accelerating voltage of ~200 k V, and electron beam current of ~3.5kA. Here we present an experimental investigation of the tunability of a reflex triode vircator by varying the A-K gap from 4 mm to 10 mm and accelerating voltages ranging from 150 kV to 250 kV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call