Abstract

The frequency of a flexural resonator and its frequency-temperature behavior usually are computed by Bernoulli's classical approximation. This approach is valid for beams with a large length-over-thickness-ratio. For shorter beams, the effects of shear stress and rotary inertia may play a significant role for temperature-compensated resonators. These effects have been taken into account for isotropic beams. The aim of this paper is to discuss the extension of the shear coefficient in the case of an anisotropic material and to compute the frequency-temperature characteristic of an (XYt)theta cut resonator when the shear stress and the rotary inertia have been taken into account. Comparisons between the classical approximation and this treatment are given for quartz. Furthermore, the numerical predictions obtained by means of different sets of data available for thermal sensitivities of elastic coefficients are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.