Abstract
This paper is the result of an investigation on the vibration of non-homogeneous orthotropic cylindrical shells, based on the shear deformation theory. Assume that the Young’s moduli, shear moduli and density of the orthotropic material are continuous functions of the coordinate in the thickness direction. The basic equations of non-homogeneous orthotropic cylindrical shells with the shear deformation and rotary inertia are derived in the framework of Donnell-type shell theory. The ends of a non-homogeneous orthotropic cylindrical shell are considered as simply supported. The basic equations are reduced to the sixth-order algebraic equation for the frequency using the Galerkin method. Solving this algebraic equation, the lowest values of non-dimensional frequency parameters for non-homogeneous orthotropic cylindrical shells with and without shear deformation and rotary inertia are obtained. Calculations, effects of shear stresses and rotary inertia, orthotropy, non-homogeneity and shell geometry parameters on the lowest values of non-dimensional frequency parameter are described. The results are verified by comparing the obtained values with those in the existing literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.