Abstract

Background Human motor imagery (MI), action execution, and action observation (AO) are functionally considered as equivalent. MI during AO can extensively induce activation of motor-related brain network in the absence of overt movement. The magnetoencephalography (MEG) provides an important technology to reveal and reflect human brain information processing in multi-frequency bands. Utilizing a MEG system, we aimed to quantitatively investigate the frequency-specific equivalent characteristics in brain processing patterns between MI during AO and action execution in multi-frequency bands, including delta, theta, alpha, beta, gamma, and high-frequency oscillations. Methods A total of 12 healthy subjects were studied with a whole-head MEG system during finger movement and MI during finger movement observation. We analyzed the brain activities in multi-frequency ranges of 1 Hz to 200 Hz. Results Both MI during AO and action execution evoked the distinctive brain activities in low frequency ranges (i.e. delta, theta, and alpha). Significant differences were found in global spectral power between finger movement and MI during AO in delta and alpha oscillations. Compared with finger movement, delta (1–4 Hz) oscillation power in MI during AO were obviously decreased in left and right frontals and occipitals, and theta (4–8 Hz) and alpha (8–13 Hz) oscillation power were obviously increased in frontal, parietal and occipital. Conclusion MEG power evoked by finger movement and MI during AO is mainly concentrated in the energy distribution below 13 Hz. Furthermore, finger movement and MI during AO might share frequency-specific equivalence of brain neural activation dependent on different MEG frequency ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.