Abstract

Frequency Selective Surfaces (FSS) are comprised of periodic, geometric, metallic patterns that act like an array of horizontal antennas. They were originally designed as band-pass/band-block filters. Nanofabrication techniques allow for the realization of FSS structures that operate in the near infrared (NIR) and visible portions of the electromagnetic spectrum. Thus it is possible to create arrays of light antenna filters possessing optical properties that are unlike those of dye, dielectric, or holographic filters that are in common use today. Recent studies of arrays of gold, dipole nanoantennas by our group and others offer an opportunity to compare modeled FSS response with experimental results elucidating the unique, off-normal reflectance stability of frequency selective surfaces operating in the NIR/visible portion of the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.