Abstract

Hydrogen energy storage (HES) systems have recently received attention due to their potential to support real-time power balancing in a power grid. This paper proposes a data-driven model predictive control (MPC) strategy for HES systems in coordination with distributed generators (DGs) in an islanded microgrid (MG). In the proposed strategy, a data-driven model of the HES system is developed to reflect interactive operations of an electrolyzer, hydrogen tank, and fuel cell, and hence the optimal power sharing with DGs is achieved to support real-time grid frequency regulation (FR). The MG-level controller cooperates with a device-level controller of the HES system that overrides the FR support based on the level of hydrogen. Small-signal analysis is used to evaluate the contribution of FR support. Simulation case studies are also carried out to verify the accuracy of the data-driven model and the proposed strategy is effective for improving the real-time MG frequency regulation compared with the conventional PI-based strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call