Abstract
ABSTRACT In this paper, a hybrid fuzzy cascaded fractional order proportional integral-fractional order proportional derivative (FCFOPI-FOPD) controller improves the frequency regulation of a renewable energy source (RES) integrated power system. The frequency response characteristics of a two-area non-linear thermal-hydro-wind model under various operating situations are explored with an emphasis on the extensive usage of renewable energy sources (RES) in modern power systems. The power system in this study is developed using an innovative combination of a standard dynamic model of the steam turbine and the actual physical position of the generation rate constraint in the power plant model. The suggested FCFOPI-FOPD hybrid controller minimizes a power system’s frequency deviation caused by specific differences in the pre-scheduled load. The effectiveness of a proposed FCFOPI-FOPD hybrid controller in alleviating system frequency variations under various perturbations was determined using MATLAB Simulink analysis. Comprehensive results show that the FCFOPI-FOPD hybrid controller outperforms the fuzzy-structured fractional order proportional integral and derivative (FOPID) and the proportional and integral controllers. The results also demonstrate that the proposed controller improves the settling time of frequency variations in area-1, area-2, and tie-line power deviation by 47%, 51%, and 66% compared to the responses obtained with the fuzzy FOPID controller.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.