Abstract

The frequency modulation (FM) efficiency and frequency modulation/intensity modulation (FM/IM) phase shift of mid-infrared interband cascade lasers (ICLs) are studied experimentally. The modulation parameters of 2997 and 3266 nm ICLs are characterized using tunable laser absorption spectroscopy (TLAS) with H2O absorption lines located at 2998.8 and 3263.3 nm, respectively. The FM efficiency is determined by the distance between two zero crossings of the measured wavelength modulation spectrum with the second-harmonic (WMS-2f) detection signal, whereas the FM/IM phase shift is extracted by measuring the time delay between the laser intensity and frequency response, using the H2O absorption lines as markers. The results show that the FM efficiency is more than four times larger than that of conventional near-infrared distributed feedback lasers and that it decreases monotonically with increasing modulation frequency. The response of the FM/IM phase shift shows three distinct regions in its response to the increasing modulation frequency. The FM characteristics of ICLs are different from those of both conventional diode lasers and quantum cascade lasers because of the different semiconducting materials and working principles involved. This study can help to optimize wavelength modulation spectroscopy (WMS)-based sensor performance and improve simulation models for WMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.