Abstract

Tuneable, shaped, ultraviolet (UV) femtosecond laser pulses are produced by shaping and frequency doubling the output of a commercial optical parametric amplifier (OPA). A reflective mode, folded, pulse shaping assembly employing a spatial light modulator (SLM) shapes femtosecond pulses in the visible region of the spectrum. The shaped visible light pulses are frequency doubled to generate phase- and amplitude-shaped, ultrashort light pulses in the deep ultraviolet. This approach benefits from a simple experimental setup and the potential for tuning the central frequency of the shaped ultraviolet waveform. A number of pulse shapes have been synthesised and characterised using cross-correlation frequency resolved optical gating (XFROG). This pulse shaping method can be employed for coherent control experiments in the ultraviolet region of the spectrum where many organic molecules have strong absorption bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call