Abstract

Abstract Under excitation due to the environment or traffic load, cable vibration never ceases; thus, fatigue cycles generated by vibration-induced additional cable tension (VACT) owing to the change of the cable configuration from static to dynamic are significantly frequent. Therefore, VACT is a non-negligible cable-fatigue load. To investigate the cable dynamic stability and fatigue, it is necessary to determine VACT in a dynamic environment. Herein, a method for estimating VACT in the frequency-domain by using acceleration data is proposed. In this method, according to the cable vibration control equation, the frequency-domain relationship between the VACT and the vibration response of the measuring point is established based on the dynamic stiffness. Parameter analysis simplifies the proposed model to estimate VACT using only acceleration data. The proposed method is verified with cable acceleration data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call