Abstract

As cables are the most critical components of pre-stressed steel structures, accurate identification of the cable force is necessary. This paper established a vibration equation of a multi-brace strut cable, which ignores the influence of sagging and changes in the cable force during the vibration. The form of cable vibration was also developed based on the vibration theory of cables. The analytical solutions of cable vibration equations under different boundary conditions were derived by studying the vibration models of single-span cables. The cable vibration under arbitrary boundary conditions was discussed. Additionally, based on the multi-span cable element vibration theory, the theoretical model of multi-span cable vibration and a cable force calculation method were proposed. A realization principle and an algorithm of the multi-frequency fitting method were proposed to calculate and identify the cable force. Further, the accuracy of the cable force calculated by the proposed method was verified based on a multi-span cable model test and two practical project experiments. The results show that the cable force was calculated with a relative error of 8%. Finally, a cable safety monitoring system was developed and established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.