Abstract

In this work, we investigate multistep ferroelectric polarization switching dynamics of a series of poly(vinylidene fluoride-trifluoroethylene)/polystyrene, P(VDF-TrFE)/PS, as active layers in ferroelectric capacitors with variable P(VDF-TrFE)/PS thickness ratios and a wide range of driving voltage frequencies (1-1000 Hz). The PS electret-like modulation effects on the depolarized field fluctuation are proven to be responsible for this multistep ferroelectric polarization switching process. To be specific, the switching current density peak splits into two peaks in both positive and negative voltage ranges according to the stimulus-response (S-R) data from the metal-ferroelectric-electret-metal capacitor driven by a periodic triangular voltage wave. The double-peak current trough appears when the transitorily suppressed ferroelectric polarization switching occurs while the discharge and recharge of the PS electret by external voltage brings a specific dynamic change in the electric field across ferroelectric (EFE). We also propose a theoretical model to simulate the ferroelectric polarization switching process at a current trough zone. This phenomenon provides new concepts on the electret-modulated multistep ferroelectric switching dynamics, and such switching mechanisms are critical for realizing reliable nonvolatile memory applications in flexible electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.