Abstract

Resonator-based optical frequency comb generation is an enabling technology for a myriad of applications ranging from communications to precision spectroscopy. These frequency combs can be generated in nonlinear resonators driven using either continuous-wave (CW) light, which requires alignment of the pump frequency with the cavity resonance, or pulsed light, which also mandates that the pulse repetition rate and cavity free spectral range (FSR) are carefully matched. Advancements in nanophotonics have ignited interest in chip-scale optical frequency combs. However, realizing pulse-driven on-chip Kerr combs remains challenging, as microresonator cavities have limited tuning range in their FSR and resonance frequency. Here, we take steps to overcome this limitation and demonstrate broadband frequency comb generation using a χ(3) resonator synchronously pumped by a tunable femtosecond pulse generator with on-chip amplitude and phase modulators. Notably, employing pulsed pumping overcomes limitations in Kerr comb generation typically seen in crystalline resonators from stimulated Raman scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.