Abstract

Equations governing the transient- and steady-state regimes of the fractional series RLC circuits containing dissipative and/or generative capacitor and inductor are posed by considering the electric current as a response to electromotive force. Further, fractional RLC circuits are analyzed in the steady-state regime and their energy consumption/production properties are established depending on the angular frequency of electromotive force. Frequency characteristics of the modulus and argument of transfer function, i.e., of circuit’s equivalent admittance, are analyzed through the Bode diagrams for the whole frequency range, as well as for low and high frequencies employing the asymptotic expansions of transfer function modulus and argument.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.