Abstract
Fundamentals of operation of an optical fiber piezoelectroluminescent (PEL) sensor inside a polymer composite structure at its cyclic loading are considered. The optical fiber PEL-sensor is considered as part of the composite/sensor electromechanical system taking into account the presence of anisotropy, piezoactivity and Maxwell-Wagner relaxation of the electric fields of the sensor elements. The purpose of the optical fiber PEL-sensor is to diagnose the inhomogeneous complex volumetric deformed state of a long cylindrical area (a neighborhood along the built-in linear sensor) inside a cyclically loaded composite structure. A numerical model has been developed to solve the 3D related boundary value problem of electric elasticity for a representative fragment of the system composite/sensor in the ANSYS package. The numerical modeling of deformation and electric harmonic fields inside the representative fragment was carried out; in particular, distributions of amplitudes of these fields in elements of the structure of the optical fiber PEL sensor were found. The resonant modes are revealed, and the analysis is given of regularities of frequency dependences for the real and imaginary parts of controlling and informative transfer coefficients of the built-in fiber-optic PEL-sensor in the composite/sensor system. Additionally, graphs of frequency dependencies of tangents of mechanical loss angles for various cases of deformation of the composite/sensor system are given. Damping of the composite/sensor system is carried out as a result of the conversion of some part of the mechanical energy (transmitted from the composite to the sensor during their joint deformation) into Joule heat by the fiber-optic PEL sensor with a subsequent dispersion. The latter is caused by the direct piezoelectric effect and Maxwell-Wagner relaxation of electric fields in the sensor elements. The frequency range of deformation of the composite/sensor system is set, in which the passive vibration damping mode is most effectively implemented. It is numerically confirmed that for the extreme high-frequency case of deformation of the composite/sensor system, relaxation processes are not implemented and, as a result, solutions for the controlling and informative transfer coefficients of the PEL-sensor practically coincide with previously obtained numerical solutions that did not take into account the electrical conductivity of the sensor structure elements.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have