Abstract

In this paper we aim at predicting cerebral palsy, the most serious and lifelong motor function disorder in children, at an early age by analysing infants' motion data. An essential step for doing so is to extract informative features with high class separability. We propose a set of features derived from frequency analysis of the motion data. Then, we evaluate the practicality of our features on one of the richest data sets collected to study this disease. In this data set, the motion data are extracted from both electromagnetic sensors as well as video camera. The proposed features are used for classifying both data sets. Using these features, we manage to achieve promising classification performance. Classification accuracy of 91% for the sensor data and 88% for the video-derived data show not only the advantage of employing these features for predicting cerebral palsy, but also that replacing electromagnetic sensors with a video camera is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.