Abstract
PurposeTo determine the significance of complex-valued inputs and complex-valued convolutions compared to real-valued inputs and real-valued convolutions in convolutional neural networks (CNNs) for frequency and phase correction (FPC) of GABA-edited magnetic resonance spectroscopy (MRS) data. MethodsAn ablation study using simulated data was performed to determine the most effective input (real or complex) and convolution type (real or complex) to predict frequency and phase shifts in GABA-edited MEGA-PRESS data using CNNs. The best CNN model was subsequently compared using both simulated and in vivo data to two recently proposed deep learning (DL) methods for FPC of GABA-edited MRS. All methods were trained using the same experimental setup and evaluated using the signal-to-noise ratio (SNR) and linewidth of the GABA peak, choline artifact, and by visually assessing the reconstructed final difference spectrum. Statistical significance was assessed using the Wilcoxon signed rank test. ResultsThe ablation study showed that using complex values for the input represented by real and imaginary channels in our model input tensor, with complex convolutions was most effective for FPC. Overall, in the comparative study using simulated data, our CC-CNN model (that received complex-valued inputs with complex convolutions) outperformed the other models as evaluated by the mean absolute error. ConclusionOur results indicate that the optimal CNN configuration for GABA-edited MRS FPC uses a complex-valued input and complex convolutions. Overall, this model outperformed existing DL models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.