Abstract
The freezing point and the melting point of myoplasm were measured with two experimental models. In all samples, a supercooled stage was reached by lowering the temperature of the sample to approximately - 7 degrees C, and the freezing of the sample was mechanically induced. The freezing process was associated with a phase transition in the interstices between the contractile filaments. In intact muscle fibers, the freezing point showed a structural component (0.43 degrees C), and the melting point indicated that the intracellular and the extracellular compartments are isotonic. When the sample of myoplasm, previously inserted in a cylindrical cavity was incubated in an electrolyte solution, the freezing point showed a structural component similar to that of the intact muscle fiber, but the melting point was lower than the freezing and the melting points of the embedding solution. This was interpreted as evidence that the counterions around the contractile filaments occupied a nonnegligible fraction of the intracellular compartment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have