Abstract

Thermally stimulated discharge current measurements were performed to study slow relaxation processes in two canonical charge density wave systems K(0.3)MoO(3) and o-TaS(3). Two relaxation processes were observed and characterized in each system, corroborating the results of dielectric spectroscopy. Our results are consistent with the scenario of the glass transition on the charge density wave superstructure level. In particular, the results directly prove the previously proposed criterion of charge density wave freezing based on the interplay of charge density wave pinning by impurities and screening by free carriers. In addition, we obtained new information on distribution of relaxation parameters, as well as on nonlinear dielectric response both below and above the threshold field for charge density wave sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.