Abstract

Due to the poor biodegradability of released organics and the rapid consumption of hydrogen, hydrogen production from the untreated waste activated sludge (WAS) and/or inocula is still limited. In this study, it was found that the dark fermentative hydrogen production was largely enhanced from WAS pretreated by freezing in the presence of nitrite. With an increase of nitrite addition from 100 to 400 mg NO2−-N/L during freezing pretreatment (−5 °C for 4 h), the maximal hydrogen yield increased from 7.96 to 19.40 mL/g VS (volatile solids), which was 5.5–13.4 times of that in the control (without freezing and nitrite addition). Mechanism explorations revealed that the proposed pretreatment not only accelerated the disintegration of sludge but also promoted the proportion of biodegradable organics released, thereby provided more bio-available substrates for subsequent hydrogen production. Proposed pretreatment severely suppressed the sludge microorganisms responding to homoacetogenesis (−32.1%), methanogenesis (−58.4%), and sulfate-reducing process (−51.5%), inhibited the consumption of hydrogen. Moreover, there was more acetic and butyric (76% versus 57.5%) but less propionic acid (22.6% versus 13.4%) in this pretreated fermenter, which was in correspondence with the theory of fermentation type affecting hydrogen production. Long-term fermentation experiments indicated that the proposed pretreatment boosted the [FeFe]-hydrogenase activities while suppressed the activities of carbon monoxide dehydrogenase, coenzyme F420, and adenylyl sulfate reductase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.