Abstract

Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (−45.8 % versus −5.1 % and − 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.