Abstract
Copper smelting in one processing step directly from concentrates to blister copper has been realized on an industrial scale in a few smelters, using concentrates with a high Cu/Fe-ratio. The fluxing of any direct-to-blister slag is demanding task as it must be fluid and maintain suitable properties in the oxidising conditions of copper making, and the reducing conditions of slag cleaning. The smelting slags in the direct-to-blister furnaces contain much more chemically dissolved copper than typical matte making slags. In this investigation, an industrial direct-to-blister slag was used in a freeze lining growth kinetics study. The freeze lining was formed on a water cooled metal finger at typical smelting temperatures using different dipping times from 5 to 120 min. The growth kinetics of the lining was very fast in the initial stage of the slag contact with the cooled metal surface. The quenched samples showed characteristic solidification zones from the cold end towards the hot side of the freeze lining and the molten slag shown already in other freeze linings and different slag types. The slag chemistry modifies the solidification pattern very much and thus the crystalline phases in the lining included also phases created by the high copper oxide concentration as well as the specific gangue assay of the smelters feed mixture. The thermal stability of the freeze lining in high-in-copper DB slags is discussed as well as the mechanism of delafossite precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal for Manufacturing Science & Production
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.