Abstract

The present study was geared at identifying the conditions to stabilize poly (d,l-lactic-glycolic) (PLGA) and polycaprolactone (PCL) nanoparticles (NP) by freeze-drying with several cryoprotective agents. Differential scanning calorimetry and freeze–thawing studies were used to optimize the lyophilization process. These studies showed that all samples were totally frozen at −45°C and evidenced the necessity of adding sucrose, glucose, trehalose or gelatine to preserve the properties of NP regardless of the freezing procedure. However, only 20% sucrose and 20% glucose exerted an acceptable lyoprotective effect on PLGA and PCL NP, respectively. Nonetheless, the final to initial size ratios (∼1.5) indicated that particle size was slightly affected in both cases. In vivo studies with CyA-loaded PCL NP whose sizes matched those obtained after NP preparation (100 nm) and after being lyophilized (160 nm) showed that the changes of particle size might have some relevance on drug pharmacokinetics. The MRT was significantly (P<0.05) modified after an oral CyA dose of 5 mg/kg and the treatment with 160-nm sized CyA-loaded NP produced a higher drug partition into the liver of Wistar rats potentially affecting the toxic and immunosuppressive profile of the drug. Therefore, although the particle size changes induced by NP lyophilization were slight, they need to be carefully evaluated and cannot be neglected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call