Abstract

Conventional 2D drug screening often fails to accurately predict clinical outcomes. We present an innovative approach to improve hepatotoxicity assessment by encapsulating HepG2 spheroids in gelatin hydrogel matrices with different mechanical properties. Encapsulated spheroids exhibit sustained liver-specific functionality, enhanced expression of drug-metabolizing enzymes, and increased drug sensitivity compared to 2D cultures. The platform detects critical variations in drug response, with significant differences in IC50 values between 2D and spheroid cultures ranging from 1.3-fold to > 13-fold, particularly for acetaminophen. Furthermore, drug-metabolizing enzyme expression varies across hydrogel concentrations, suggesting a role for matrix mechanical properties in modulating hepatocyte function. This novel spheroid-hydrogel platform offers a transformative approach to hepatotoxicity assessment, providing increased sensitivity, improved prediction, and a more physiologically relevant environment. The use of such advanced in vitro models can accelerate drug development, reduce animal testing, and contribute to improved patient safety and clinical outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.