Abstract
We present a microfluidic technique for sensitive, real-time, optimized detection of airborne water-soluble molecules by surface-enhanced Raman spectroscopy (SERS). The method is based on a free-surface fluidic device in which a pressure-driven liquid microchannel flow is constrained by surface tension. A colloidal suspension of silver nanoparticles flowing through the microchannel that is open to the atmosphere absorbs gas-phase 4-aminobenzenethiol (4-ABT) from the surrounding environment. As surface ions adsorbed on the colloid nanoparticles are substituted by 4-ABT, the colloid aggregates, forming SERS "hot spots" whose concentrations vary predictably along the microchannel flow. 4-ABT confined in these hot spots produces SERS spectra of very great intensity. An aggregation model is used to account quantitatively for the extent of colloid aggregation as determined from the variation of the SERS intensity measured as a function of the streamwise position along the microchannel, which also corresponds to nanoparticle exposure time. This allows us to monitor simultaneously the nanoparticle aggregation process and to determine the location at which the SERS signal is optimized.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have