Abstract

We report experimental results characterizing the dynamics of a liquid jet impinging normally on hydrophilic, hydrophobic, and superhydrophobic surfaces spanning the Weber number (based on the jet velocity and diameter) range from 100 to 1900. The superhydrophobic surfaces are fabricated with both hydrophobically coated silicon and polydimethylsiloxane that exhibit alternating microribs and cavities. For all surfaces a transition from a thin radially moving liquid sheet occurs. This takes the form of the classical hydraulic jump for the hydrophilic surfaces but is markedly different for the hydrophobic and superhydrophobic surfaces, where the transition is significantly influenced by surface tension and a break-up into droplets is observed at high Weber number. For the superhydrophobic surfaces, the transition exhibits an elliptical shape with the major axis being aligned parallel to the ribs, concomitant with the frictional resistance being smaller in the parallel direction than in the transverse direction. However, the total projected area of the ellipse exhibits a nearly linear dependence on the jet Weber number, and was nominally invariant with varying hydrophobicity and relative size of the ribs and cavities. For the hydrophobic and superhydrophobic scenarios, the local Weber number based on the local radial velocity and local depth of the radially moving liquid sheet is observed to be of order unity at the transition location. The results also reveal that for increasing relative size of the cavities, the ratio of the ellipse axis (major-to-minor) increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call