Abstract

When a vertical laminar jet impinges on a horizontal surface, it will spread out in a thin film. If the surface is hydrophobic and a downstream depth is not maintained, the film will radially expand until it breaks up into filaments or droplets. We present the first analysis and model that describes the location of this transition for both isotropic and anisotropic structured superhydrophobic (SH) surfaces. All surfaces explored are hydrophobic or SH, where the SH surfaces exhibit an apparent slip at the plane of the surface due to a shear free condition above the air filled cavities between the structures. The influence of apparent slip on the entire flow field is significant and yields behavior that deviates notably from classical behavior for a smooth hydrophilic surface where a hydraulic jump would form. Instead, break up into droplets occurs where the jet’s outward radial momentum is balanced by the inward surface tension force of the advancing film. For hydrophobic surfaces, or SH surfaces with random micropatterning, the apparent slip on the surface is uniform in all directions and droplet breakup occurs in a circular pattern. When alternating rib/cavity microstructures are used to create the SH surface, the apparent slip varies as a function of the azimuthal coordinate, and thus, the breakup location is elliptically shaped. The thin film dynamics are modeled by a radial momentum analysis for a given jet Weber number and specified slip length and the location of breakup for multiple surfaces over a range of jet Weber numbers and realistic slip length values is quantified. The results of the analysis show that the breakup radius increases with increasing Weber number and slip length. The eccentricity of the breakup ellipse for the rib/cavity SH structures increases with increasing Weber number and slip length as well. A generalized model that allows prediction of the transition (break-up) location as a function of all influencing parameters is presented. Model results are compared to experimental measurements with very good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call