Abstract

We report a general method for the synthesis of free-standing, self-assembled MOF monolayers (SAMMs) at an air–water interface using polymer-brush coated MOF nanoparticles. UiO-66, UiO-66-NH2, and MIL-88B-NH2 were functionalized with a catechol-bound chain-transfer agent (CTA) to graft poly(methyl methacrylate) (PMMA) from the surface of the MOF using reversible addition-fragmentation chain transfer polymerization (RAFT). The polymer-coated MOFs were self-assembled at the air–water interface into monolayer films ∼250 nm thick and capable of self-supporting at a total area of 40 mm2. Mixed-particle films were prepared through the assembly of MOF mixtures, while multilayer films were achieved through sequential transfer of the monolayers to a glass slide substrate. This method offers a modular and generalizable route to fabricate thin-films with inherent porosity and sub-micron thickness composed of a variety of MOF particles and functionalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call