Abstract

This paper investigates the free vibration of magneto-electro-elastic (MEE) nanobeams based on the nonlocal theory and Timoshenko beam theory. The MEE nanobeam is subjected to the external electric potential, magnetic potential and uniform temperature rise. The governing equations and boundary conditions are derived by using the Hamilton principle and discretized by using the differential quadrature (DQ) method to determine the natural frequencies and mode shapes. A detailed parametric study is conducted to study the influences of the nonlocal parameter, temperature rise, external electric and magnetic potentials on the size-dependent vibration characteristics of MEE nanobeams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.