Abstract

An exact dynamic stiffness matrix method has been developed to predict the free vibration characteristics of composite beams (or simple structures assembled from them) for which the bending and torsional displacements are (materially) coupled. To achieve this, an explicit expression is presented for each of the elements of the dynamic stiffness matrix of a bending-torsion coupled composite beam. This was made possible by performing symbolic computing with the help of the package Reduce. Programming the stiffness expressions in Fortran on a SUN SPARC station indicates about 75% savings in computer time when compared with the matrix inversion method normally adopted in the absence of such expressions. The derived dynamic stiffness matrix is then used in conjunction with the Wittrick-Williams algorithm to compute the natural frequencies and mode shapes of composite beams with substantial coupling between bending and torsional displacements. The results obtained from the present theory are compared with those available in the literature and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.