Abstract

Abstract The exact dynamic stiffness matrix of a uniform laminated composite beam based on trigonometric shear deformation theory is developed in this paper. A refined laminated beam constitutive equation is derived that takes into account the breadth direction strains. The dynamic stiffness matrix is formulated directly in an exact sense by solving the governing differential equations of motion that describe the deformations of laminated beams according to the trigonometric shear deformation theory, which includes the sinusoidal variation of the axial displacement over the cross-section. The derived dynamic stiffness matrix is then used in conjunction with the Wittrick–Williams algorithm to compute the natural frequencies and mode shapes of the composite beams. The results obtained from the present theory are compared with those available in the literature wherever possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.