Abstract
Natural frequencies and buckling stresses of plates made of functionally graded materials (FGMs) are analyzed by taking into account the effects of transverse shear and normal deformations and rotatory inertia. The modulus of elasticity of the plates is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional (2-D) higher-order theory for rectangular functionally graded (FG) plates is derived through Hamilton’s principle. Several sets of truncated approximate theories are applied to solve the eigenvalue problems of FG plates with simply supported edges. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency are examined in detail. Critical buckling stresses of FG plates subjected to in-plane stresses are also obtained and a relation between the buckling stress and natural frequency of simply supported FG plates without in-plane stresses is presented. The distributions of modal displacements and modal stresses in the thickness direction are obtained accurately by satisfying the surface boundary conditions of a plate. The modal transverse stresses have been obtained by integrating the three-dimensional equations of motion in the thickness direction starting from the top or bottom surface of a plate. The present numerical results are also verified by satisfying the energy balance of external and internal works are considered to be sufficient with respect to the accuracy of solutions. It is noticed that the present 2-D higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported FG plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.