Abstract

A two-dimensional (2D) higher-order deformation theory is presented for vibration and buckling problems of circular cylindrical shells made of functionally graded materials (FGMs). The modulus of elasticity of functionally graded (FG) shells is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. By using the method of power series expansion of continuous displacement components, a set of fundamental governing equations which can take into account the effects of both transverse shear and normal deformations, and rotatory inertia is derived through Hamilton’s principle. Several sets of truncated M th order approximate theories are applied to solve the eigenvalue problems of simply supported FG circular cylindrical shells. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency for the fundamental mode r=s=1r=s=1 are examined in detail. A comparison of the present natural frequencies of isotropic and FG shells is also made with previously published results. Critical buckling stresses of simply supported FG circular cylindrical shells subjected to axial stress are also obtained and a relation between the buckling stress and natural frequency is presented. The internal and external works are calculated and compared to prove the numerical accuracy of solutions. Modal transverse shear and normal stresses are calculated by integrating the three-dimensional (3D) equations of motion in the thickness direction satisfying the stress boundary conditions at the outer and inner surfaces. The 2D higher-order deformation theory has an advantage in the analysis of vibration and buckling problems of FG circular cylindrical shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.