Abstract

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave as Euler-Bernoulli beams while the core layer as a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters. Two types of boundary conditions simple supported-simple-supported (SS-SS) and clamped-clamped (C-C) under the influence of materials properties and geometrical parameters are studied. The validation of results is done by comparing with another studies, which available in the literature and found good agreement between the studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call