Abstract

The study focuses on the free vibration analysis of beams made of axially functionally graded materials (AFGM) with curvilinear variable cross-sections along their length. The beams encompass various shapes, including concave and convex conic sections, with axial material properties varying according to polynomial and exponential laws. The equations of motion are derived using Hamilton’s principle within the framework of Timoshenko beam theory. These governing equations, subjected to various boundary conditions, are solved using the differential transform method (DTM). The proposed solution technique is validated by comparing computed natural frequencies with the existing literature and results obtained using three-dimensional finite element analysis in ABAQUS. The incorporation of material gradients into the beam finite element models was achieved using the user-defined material subroutine (UMAT). Additionally, a comprehensive study is conducted to examine the influence of various factors on the natural frequencies of functionally graded beams. These factors include parameters of material laws, types of variable beam shapes, slenderness ratio, and specific boundary conditions. This study provides a thorough understanding of the modal dynamics of the considered beams, offering valuable insights into the behavior of FGM structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.