Abstract
Łukasiewicz implication algebras are the {→,1}-subreducts of MV- algebras. They are the algebraic counterpart of Super-Łukasiewicz Implicational Logics investigated in Komori (Nogoya Math J 72:127–133, 1978). In this paper we give a description of free Łukasiewicz implication algebras in the context of McNaughton functions. More precisely, we show that the |X|-free Łukasiewicz implication algebra is isomorphic to \({\bigcup_{x\in X} [x_\theta)}\) for a certain congruence θ over the |X|-free MV-algebra. As corollary we describe the free algebras in all subvarieties of Łukasiewicz implication algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.